• 名称:医学生物化学-西综考点精讲
  • 分类:考研专业课
  • 观看人数:加载中...
  • 时间:2022-01-08 22:47

生物化学是研究生命化学的科学,它在分子水平上探讨生命的本质,即研究生物体的化

学组成及化学变化规律的科学。医学生物化学主要研究人体的生物化学,它是一门重要的医

学基础课程。近来年,生物学、微生物学、免疫学、生理学和病理学等基础医学学科的研究

均深入到分子水平,并应用生物化学的理论和技术解决各个学科的问题。同样,生物化学与

临床医学的关系也很密切。近代医学的发展经常运用生物化学的理论和方法来诊断、治疗和

预防疾病,并且许多疾病的机理也需要从分子水平上加以探讨。生物化学课程为其它医学基

础课程和临床医学课程提供必要的理论基础,是医学各专业的必修课。

第一章  蛋白质的结构和功能

一、组成蛋白质的20种氨基酸的分类

  1、非极性氨基酸

  包罗:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、脯氨酸

  2、极性氨基酸

  极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸

  酸性氨基酸:天冬氨酸、谷氨酸

  碱性氨基酸:赖氨酸、精氨酸、组氨酸 

  其中:属于芳香族氨基酸的是:色氨酸、酪氨酸、苯丙氨酸 

     属于亚氨基酸的是:脯氨酸

     含硫氨基酸包罗:半胱氨酸、蛋氨酸

  注意:在识记时可以只记第一个字,如碱性氨基酸包罗:赖精组

二、氨基酸的理化性质

  1、两性解离及等电点

  氨基酸分子中有游离的氨基和游离的羧基,能与酸或碱类物质结合成盐,故它是一种两性电解质。在某一PH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。

  2、氨基酸的紫外吸收性质

芳香族氨基酸在280nm波长附近有最大的紫外吸收峰,由于大多数蛋白质含有这些氨基酸残基,氨基酸残基数与蛋白质含量成正比,故通过对280nm波长的紫外吸光度的测量可对蛋白质溶液进行定量分析。

  3、茚三酮反应 

  氨基酸的氨基与茚三酮水合物反应可生成蓝紫色化合物,此化合物最大吸收峰在570nm波长处。由于此吸收峰值的大小与氨基酸释放出的氨量成正比,因此可作为氨基酸定量分析方法。

三、肽

  两分子氨基酸可借一分子所含的氨基与另一分子所带的羧基脱去1分子水缩合成最简单的二肽。二肽中游离的氨基和羧基继续借脱水作用缩合连成多肽。10个以内氨基酸连接而成多肽称为寡肽;39个氨基酸残基组成的促肾上腺皮质激素称为多肽;51个氨基酸残基组成的胰岛素归为蛋白质。

  多肽连中的自由氨基末端称为N端,自由羧基末端称为C端,命名从N端指向C端。

  人体内存在许多具有生物活性的肽,重要的有:

  谷胱甘肽(GSH):是由谷、半胱和甘氨酸组成的三肽。半胱氨酸的巯基是该化合物的主要功能基团。GSH的巯基具有还原性,可作为体内重要的还原剂庇护体内蛋白质或酶分子中巯基免被氧化,使蛋白质或酶处于活性状态。

四、蛋白质的分子结构

  1、蛋白质的一级结构:即蛋白质分子中氨基酸的摆列挨次。

  主要化学键:肽键,有些蛋白质还包含二硫键。

  2、蛋白质的高级结构:包罗二级、三级、四级结构。  

  1)蛋白质的二级结构:指蛋白质分子中某一段肽链的局部空间结构,也就是该段肽链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。二级结构以一级结构为基础,多为短距离效应。可分为:

α-螺旋:多肽链主链围绕中心轴呈有规律地螺旋式上升,顺时钟走向,即右手螺旋,每隔3.6个氨基酸残基上升一圈,螺距为0.540nm。α-螺旋的每个肽键的N-H和第四个肽键的羧基氧形成氢键,氢键的标的目的与螺旋长轴基本平形。

β-折叠:多肽链充分伸展,各肽键平面折叠成锯齿状结构,侧链R基团交错位于锯齿状结构上下方;它们之间靠链间肽键羧基上的氧和亚氨基上的氢形成氢键维系构象不变.

β-转角:常发生于肽链进行180度回折时的转角上,常有4个氨基酸残基组成,第二个残基常为脯氨酸。

  无规卷曲:无确定规律性的那段肽链。

  主要化学键:氢键。

  2)蛋白质的三级结构:指整条肽链中全部氨基酸残基的相对空间位置,显示为长距离效应。

  主要化学键:疏水键(最主要)、盐键、二硫键、氢键、范德华力。

  3)蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和彼此作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。

  主要化学键:疏水键、氢键、离子键

五、蛋白质结构与功能关系

  1、蛋白质一级结构是空间构象和特定生物学功能的基础。一级结构相似的多肽或蛋白质,其空间构象以及功能也相似。

  尿素或盐酸胍可破坏次级键

β-巯基乙醇可破坏二硫键

  2、蛋白质空间结构是蛋白质特有性质和功能的结构基础。

  肌红蛋白:只有三级结构的单链蛋白质,易与氧气结合,氧解离曲线呈直角双曲线。

  血红蛋白:具有4个亚基组成的四级结构,可结合4分子氧。成人由两条α-肽链(141个氨基酸残基)和两条β-肽链(146个氨基酸残基)组成。在氧分压较低时,与氧气结合较难,氧解离曲线呈S状曲线。因为:第一个亚基与氧气结合以后,促进第二及第三个亚基与氧气的结合,当前三个亚基与氧气结合后,又大大促进第四个亚基与氧气结合,称正协同效应。结合氧后由紧张态变为败坏态。

六、蛋白质的理化性质

  1、蛋白质的两性电离:蛋白质两端的氨基和羧基及侧链中的某些基团,在必然的溶液PH条件下可解离成带负电荷或正电荷的基团。

  2、蛋白质的沉淀:在适当条件下,蛋白质从溶液中析出的现象。包罗:

a.丙酮沉淀,破坏水化层。也可用乙醇。

b.盐析,将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,破坏在水溶液中的不变因素电荷而沉淀。

  3、蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,从而导致其理化性质的改变和生物活性的丧失。主要为二硫键和非共价键的破坏,不涉及一级结构的改变。变性后,其溶解度降低,粘度增加,结晶能力消失,生物活性丧失,易被蛋白酶水解。常见的导致变性的因素有:加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂、超声波、紫外线、震荡等。

  4、蛋白质的紫外吸收:由于蛋白质分子中含有共轭双键的酪氨酸和色氨酸,因此在280nm处有特征性吸收峰,可用蛋白质定量测定。

  5、蛋白质的呈色反应

a.茚三酮反应:经水解后产生的氨基酸可发生此反应,详见二、3

b. 双缩脲反应:蛋白质和多肽分子中肽键在稀碱溶液中与硫酸酮共热,呈现紫色或红色。氨基酸不出现此反应。蛋白质水解加强,氨基酸浓度升高,双缩脲呈色深度下降,可检测蛋白质水解程度。

七、蛋白质的分离和纯化

  1、沉淀,见六、2

  2、电泳:蛋白质在高于或低于其等电点的溶液中是带电的,在电场中能向电场的正极或负极移动。按照支撑物不同,有薄膜电泳、凝胶电泳等。

  3、透析:利用透析袋把大分子蛋白质与小分子化合物分开的方法。

  4、层析:

a.离子交换层析,利用蛋白质的两性游离性质,在某一特定PH时,各蛋白质的电荷量及性质不同,故可以通过离子交换层析得以分离。如阴离子交换层析,含负电量小的蛋白质首先被洗脱下来。  

b.分子筛,又称凝胶过滤。小分子蛋白质进入孔内,滞留时间长,大分子蛋白质不能时入孔内而径直流出。

  5、超速离心:既可以用来分离纯化蛋白质也可以用作测定蛋白质的分子量。不同蛋白质其密度与形态各不相同而分开。

八、多肽链中氨基酸序列分析

第二章  核酸的结构与功能

一、核酸的分子组成:

基本组成单位是核苷酸,而核苷酸则由碱基、戊糖和磷酸三种成分连接而成。  

  两类核酸:脱氧核糖核酸(DNA),存在于细胞核和线粒体内。

       核糖核酸(RNA),存在于细胞质和细胞核内。

嘌呤和嘧啶环中均含有共轭双键,因此对波长260nm摆布的紫外光有较强吸收,这一重要的理化性质被用于对核酸、核苷酸、核苷及碱基进行定性定量分析。

  2、戊糖:DNA分子的核苷酸的 糖是β-D-2-脱氧核糖,RNA中为β-D-核糖。

  3、磷酸:生物体内多数核苷酸的磷酸基团位于核糖的第五位碳原子上。

二、核酸的一级结构

  核苷酸在多肽链上的摆列挨次为核酸的一级结构,核苷酸之间通过3′,5′磷酸二酯键连接。

三、DNA的空间结构与功能

  1、DNA的二级结构

DNA双螺旋结构是核酸的二级结构。双螺旋的骨架由 糖和磷酸基构成,两股链之间的碱基互补配对,是遗传信息传递者,DNA半保留复制的基础,结构要点:

a.DNA是一反向平行的互补双链结构 亲水的脱氧核糖基和磷酸基骨架位于双链的外侧,而碱基位于内侧,碱基之间以氢键相结合,其中,腺嘌呤始终与胸腺嘧啶配对,形成两个氢键,鸟嘌呤始终与胞嘧啶配对,形成三个氢键。

b.DNA是右手螺旋结构 螺旋直径为2nm。每旋转一周包含了10个碱基,每个碱基的旋转角度为36度。螺距为3.4nm,每个碱基平面之间的距离为0.34nm。

c.DNA双螺旋结构不变的维系 横向靠互补碱基的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持,尤以后者为重要。

  2、DNA的三级结构

  三级结构是在双螺旋基础上进一步扭曲形成超螺旋,使体积压缩。在真核生物细胞核内,DNA三级结构与一组组蛋白共同组成核小体。在核小体的基础上,DNA链经反复折叠形成染色体。

  3、功能 

DNA的基本功能就是作为生物遗传信息复制的模板和基因转录的模板,它是生命遗传繁殖的物质基础,也是个体生命活动的基础。

DNA中的核糖和磷酸构成的分子骨架是没有不同的,不同区段的DNA分子只是碱基的摆列挨次不同。

四、RNA的空间结构与功能

DNA是遗传信息的载体,而遗传作用是由蛋白质功能来表现的,在两者之间RNA起着中介作用。其种类繁多,分子较小,一般以单链存在,可有局部二级结构,各类RNA在遗传信息表达为氨基酸序列过程中发挥不同作用。如:

名  称

功  能

核蛋白体RNA(rRNA)

核蛋白体组成成分

信使RNA(mRNA)

蛋白质合成模板

转运RNA(tRNA)

转运氨基酸

不均一核RNA(HnRNA)

成熟mRNA的前体

小核RNA(SnRNA)

参与HnRNA的剪接、转运

小核仁RNA(SnoRNA)

rRNA的加工和修饰

  1、信使RNA(半衰期最短)

  1)hnRNA为mRNA的初级产物,经过剪接切除内含子,拼接外显子,成为成熟的mRNA并移位到细胞质

  2)大多数的真核mRNA在转录后5′末端加上一个7-甲基鸟嘌呤及三磷酸鸟苷帽子,帽子结构在mRNA作为模板翻译成蛋白质的过程中具有促进核蛋白体与mRNA的结合,加速翻译起始速度的作用,同时可以增强mRNA的不变性。3′末端多了一个多聚腺苷酸尾巴,可能与mRNA从核内向胞质的转位及mRNA的不变性有关。

  3)功能是把核内DNA的碱基挨次,按照碱基互补的原则,抄录并转送至胞质,以决定蛋白质合成的氨基酸摆列挨次。mRNA分子上每3个核苷酸为一组,决定肽链上某一个氨基酸,为三联体密码。

  2、转运RNA(分子量最小)

  1)tRNA分子中含有10%~20%稀有碱基,包罗双氢尿嘧啶,假尿嘧啶和甲基化的嘌呤等。

  2)二级结构为三叶草形,位于摆布两侧的环状结构别离称为DHU环和Tψ环,位于下方的环叫作反密码环。反密码环中间的3个碱基为反密码子,与mRNA上相应的三联体密码子形成碱基互补。所有tRNA3′末端均有相同的CCA-OH结构。

  3)三级结构为倒L型。

  4)功能是在细胞蛋白质合成过程中作为各种氨基酸的戴本并将其转呈给mRNA。

  3、核蛋白体RNA(含量最多)

  1)原核生物的rRNA的小亚基为16S,大亚基为5S、23S;真核生物的rRNA的小亚基为18S,大亚基为5S、5.8S、28S。真核生物的18SrRNA的二级结构呈花状。

  2)rRNA与核糖体蛋白共同构成核糖体,它是蛋白质合成机器--核蛋白体的组成成分,参与蛋白质的合成。

  4、核酶:某些RNA 分子本身具有自我催化能,可以完成rRNA的剪接。这种具有催化作用的RNA称为核酶。

五、核酸的理化性质

  1、DNA的变性

  在某些理化因素作用下,如加热,DNA分子互补碱基对之间的氢键断裂,使DNA双螺旋结构松散,变成单链,即为变性。监测是否发生变性的一个最常用的指标是DNA在紫外区260nm波长处的吸光值变化。解链过程中,吸光值增加,并与解链程度有必然的比例关系,称为DNA的增色效应。紫外光吸收值达到最大值的50%时的温度称为DNA的解链温度(Tm),一种DNA分子的Tm值大小与其所含碱基中的G+C比例相关,G+C比例越高,Tm值越高。

  2、DNA的复性和杂交

  变性DNA在适当条件下,两条互补链可重新恢复天然的双螺旋构象,这一现象称为复性,其过程为退火,产生减色效应。不同来源的核酸变性后,合并一起复性,只要这些核苷酸序列可以形成碱基互补配对,就会形成杂化双链,这一过程为杂交。杂交可发生于DNA-DNA之间,RNA-RNA之间以及RNA-DNA之间。

六、核酸酶(注意与核酶区别)

  指所有可以水解核酸的酶,在细胞内催化核酸的降解。可分为DNA酶和RNA酶;外切酶和内切酶;其中一部分具有严格的序列依赖性,称为限制性内切酶。