第一章 三角形的证明
※知识点1 全等三角形的判定及性质
判定定理简称
判定定理的内容
性质
SSS
三角形别离相等的两个三角形全等
全等三角形对应边相等、对应角相等
SAS
两边及其夹角别离相等的两个三角形全等
ASA
两角及其夹边别离相等的两个三角形全等
AAS
两角别离相等且其中一组等角的对边相等的两个三角形全等
※知识点2 等腰三角形的性质定理及推论
内容
几何语言
条件与结论
等腰三角形的性质定理
等腰三角形的两底角相等。简述为:等边对等角
在△ABC中,若AB=AC,则∠B=∠C
条件:边相等,即AB=AC
结论:角相等,即∠B=∠C
推论
等腰三角形顶角的平分线、底边上的中线及底边上的高线互相垂直,简述为:三线合一
在△ABC,AB=AC,AD⊥BC,则AD是BC边上的中线,且AD平分∠BAC
条件:等腰三角形中一直顶点的平分线,底边上的中线、底边上的高线之一
结论:该线也是其他两线
※等腰三角形中的相等线段:
1.等腰三角形两底角的平分线相等
2.等腰三角形两腰上的高相等
3.两腰上的中线相等
4.底边的中点到两腰的距离相等
※知识点3 等边三角形的性质定理
内容
性质定理
等边三角形的三个内角都相等,并且每个角都等于60度
解读
【要点提示】1)等边三角形是特殊的等腰三角形。它具有等腰三角形的一切性质2)等边三角形每条边上的中线、高线和所对角的平分线“三线合一”
【易错点】所有的等边三角形都是等腰三角形,但不是所有的等腰三角形都是等边三角形
※知识点4 等腰三角形的判定定理
内容
几何语言
条件与结论
等腰三角形的判定定理
有两个角相等的三角形是等腰三角形,简述为:等校对等边
在△ABC中,若∠B=∠C则AC=BC
条件:角相等,即∠B=∠C
结论:边相等,即AB=AC
解读
【注意】对“等角对等边”的理解仍然要注意,他的前提是“在同一个三角形中”
拓展
判定一个三角形是等腰三角形有两种方法
(1)利用等腰三角形;(2)利用等腰三角形的判定定理,即“等角对等边”
※知识点5 反证法
概念
证明的一般步骤
反证法
在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论必然成立,这种证明方法称为反证法
(1)假设命题的结论不成立
(2)从这个假设出发,应用正确的推论方法,得出与定义、基本事实、已有定理或已知条件相矛盾的结果
(3)由矛盾的结果判定假设不正确,从而必定原命题正确
解读
【要点提示】(1)当一个命题涉及“必然”“至少”“至多”“无限”“唯一”等情况时,由于结论的背面简单明确,常常用反证法来证明
(2)“推理”必需顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果
第二章 一元一次不等式与一元一次不等式组
一. 不等关系
※1. 一般地,用符号“<”(或“≤”), “>”(或“≥”)连接的式子叫做不等式
※2. 准确“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.
非负数 <===> 大于等于0(≥0) <===> 0和正数 <===> 不小于0
非正数 <===> 小于等于0(≤0) <===> 0和负数 <===> 不大于0
二. 不等式的基本性质
※1. 掌握不等式的基本性质,并会灵活运用:
(1) 不等式的两边加上(或减去)同一个整式,不等号的标的目的不变,即:
如果a>b,那么a+c>b+c, a-c>b-c.
(2) 不等式的两边都乘以(或除以)同一个正数,不等号的标的目的不变,即:
如果a>b,并且c>0,那么ac>bc,
(3) 不等式的两边都乘以(或除以)同一个负数,不等号的标的目的改变,即:
如果a>b,并且c<0,那么ac ※2. 比力大小:(a、b别离表示两个实数或整式) 一般地: 如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b; 如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b; 如果a 即: a>b <===> a-b>0 a=b <===> a-b=0 a a-b<0 三. 不等式的解集: ※1.能使不等式成立的未知数的值,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式。 ※2.不等式的解可以有无数多个,一般是在某个范围内的所有数,与方程的解不同 3.不等式的解集在数轴上的表示: 用数轴表示不等式的解集时,要确定边界和标的目的: ①边界:有等号的是实心圆圈,无等号的是空心圆圈; ②标的目的:大向右,小向左 四. 一元一次不等式: ※1.只含有一个未知数,且含未知数的式子是整式,未知数的次数是1,像这样的不等式叫做一元一次不等式。 ※2.解一元一次不等式的过程与解一元一次方程类似,当不等式两边都乘以一个负数时,不等号要改变标的目的。 ※3.解一元一次不等式的步骤: ①去分母; ②去括号; ③移项; ④合并同类项; ⑤系数化为1(不等号的改变问题) ※4.一元一次不等式基本情形为ax>b(或ax ①当a>0时,解为 ; ②当a=0时,且b<0,则x取一切实数; 当a=0时,且b≥0,则无解; ③当a<0时,解为 。 5. 列不等式解应用题基本步骤与列方程解应用题相类似,即: ①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义; ②设:设出适当的未知数; ③列:按照题中的不等关系,列出不等式; ④解:解出所列的不等式的解集; ⑤答:写出答案,并检验答案是否符合题意。 六. 一元一次不等式组 ※1.定义:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组。 ※2.一元一次不等式组中各个不等式解集的公共部分叫做不等式组的解集。如果这些不等式的解集无公共部分,就说这个不等式组无解。(解集的公共部分,通常是利用数轴来确定。) ※3.解一元一次不等式组的步骤: (1)别离求出不等式组中各个不等式的解集; (2)利用数轴求出这些解集的公共部分,即这个不等式组的解集。 两个一元一次不等式组的解集的四种情况(a、b为实数,且a x>b,两大取较大 x>a,两小取小 a 无解,在大小分离没有解(是空集) 第三章 图形的平移与旋转 一、平移变换: 1.概念:在平面内,将一个图形沿着某个标的目的移动必然的距离,这样的图形运动叫做平移。 2.性质: (1)平移前后图形全等; (2)对应点连线平行或在同一直线上且相等。 3.平移的作图步骤和方法: (1)分清标题问题要求,确定平移的标的目的和平移的距离; (2)分析所作的图形,找出构成图形的关健点; (3)沿必然的标的目的,按必然的距离平移各个关健点; (4)连接所作的各个关键点,并标上相应的字母; (5)写出结论。 二、旋转变换: 1.概念: 在平面内,将一个图形绕一个定点沿某个标的目的转动一个角度,这样的图形运动叫做旋转。 说明: (1)图形的旋转是由旋转中心和旋转的角度所决定的; (2)旋转过程中旋转中心始终保持不动。 (3)旋转过程中旋转的标的目的是相同的. (4)旋转过程静止时,图形上一个点的旋转角度是一样的。 旋转不改变图形的大小和形状。 2.性质: (1)对应点到旋转中心的距离相等; (2)对应点与旋转中心所连线段的夹角等于旋角; (3)旋转前、后的图形全等。 3.旋转作图的步骤和方法: (1)确定旋转中心及旋转标的目的、旋转角; (2)找出图形的关键点; (3)将图形的关键点和旋转中心连接起来,然后按旋转标的目的别离将它们旋转一个旋转角度数,得到这些关键点的对应点; (4)按原图形按序连接这些对应点,所得到的图形就是旋转后的图形。 说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。 4.常见考法 (1)把平移旋转结合起来证明三角形全等; (2)利用平移变换与旋转变换的性质,设计一些标题问题 第四章 因式分解 一. 分解因式 ※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。 ※2.因式分解与整式乘法是互逆关系: 因式分解与整式乘法的区别和联系: (1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘。 二.提公共因式法 ※1.如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 ※2.概念内涵: (1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式; (3)提公因式法的理论依据是乘法对加法的分配律。 ※3.易错点点评: (1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”; (3)多项式中某一项恰为公因式;提出后;括号中这一项为+1;不漏掉。 三.公式法 ※1.如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。 ※2.主要公式: (1)平方差公式:a2-b2=(a+b)(a-b) (2)完全平方公式: 图片 ※3.运用公式法: (1)平方差公式:a2-b2=(a+b)(a-b) ①应是二项式或视作二项式的多项式; ②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号。 (2)完全平方公式:图片 ①应是三项式; ②其中两项同号,且各为一整式的平方; ③还有一项可正负,且它是前两项幂的底数乘积的2倍。 ※4.因式分解的思路与解题步骤: (1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法; (3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必需是几个整式的乘积,不然不是因式分解; (5)因式分解的结果必需进行到每个因式在有理数范围内不能再分解为止。 四.分组分解法: ※1.分组分解法:利用分组来分解因式的方法叫做分组分解法。 图片 ※2.概念内涵: 分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式。 ※3.注意:分组时要注意符号的变化。 五. 十字相乘法: ※1.对于二次三项式图片 ,将a和c别离分解成两个因数的乘积,图片 ,图片 ,且满足图片 ,往往写成图片的形式,将二次三项式进行分解。 ※2. 二次三项式图片的分解: ※3.规律内涵: (1)理解:分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同。 (2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p。 4. 易错点点评: (1)十字相乘法在对系数分解时易出错; (2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确。 第五章 分式与方程 一.认识分式 ※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式。 整式A除以整式B,可以表示成图片的形式。如果除式B中含有字母,那么称图片为分式,对于任意一个分式,分母都不能为零。 ※2.整式和分式统称为有理式,即图片 ※3.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 ※4.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分。 二. 分式的乘除法
The most popular courses