⾼⼀数学必修⼀知识点总结
⾼⼀数学必修⼀的学习,需要⼤家对知识点进⾏总结,这样⼤家最⼤效率地提⾼⾃⼰的学习成绩,
今天公⽂⼩编收集整理了⾼⼀数学必修⼀知识点总结,欢迎阅读!
⾼⼀数学必修⼀知识点总结篇1
知识点总结
本节知识包罗函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的
图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数
的图象的基础,函数的图象是它们的综合。所以理解了前⾯的⼏个知识点,函数的图象就迎刃⽽解了。
⼀、函数的单调性
1、函数单调性的定义
2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法
⼆、函数的奇偶性和周期性
1、函数的奇偶性和周期性的定义
2、函数的奇偶性的判定和证明⽅法
3、函数的周期性的判定⽅法
三、函数的图象
1、函数图象的作法(1)描点法(2)图象变换法
2、图象变换包罗图象:平移变换、伸缩变换、对称变换、翻折变换。
常见考法
本节是段考和⾼考必不成少的考查内容,是段考和⾼考考查的重点和难点。选择题、填空题和解答
题都有,并且题⽬难度较⼤。在解答题中,它可以和⾼中数学的每⼀章联合考查,多属于拔⾼题。多考
查函数的单调性、最值和图象等。
误区提醒
1、求函数的单调区间,必需先求函数的定义域,即遵循“函数问题定义域优先的原则”。
2、单调区间必需⽤区间来表⽰,不能⽤集合或不等式,单调区间⼀般写成开区间,不必考虑端点
问题。
3、在多个单调区间之间不能⽤“或”和“”连接,只能⽤逗号隔开。
4、判断函数的奇偶性,⾸先必需考虑函数的定义域,如果函数的定义域不关于原点对称,则函数
⼀定是⾮奇⾮偶函数。
5、作函数的图象,⼀般是⾸先化简解析式,然后确定⽤描点法或图象变换法作函数的图象。
二、函数的有关概念
1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.
注意:
1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:
(1)分式的分母不等于零;
(2)偶次方根的被开方数不小于零;
(3)对数式的真数必需大于零;
(4)指数、对数式的底必需大于零且不等于1.
第 1 页
(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.
(6)指数为零底不成以等于零,
(7)实际问题中的函数的定义域还要保证实际问题有意义.
◆相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必需同时具备)
(见课本21页相关例2)
2.值域 : 先考虑其定义域
(1)不雅观察法
(2)配方法
(3)代换法
3. 函数图象知识归纳
第 2 页
会员精选
最新高一数学必修一函数知识点总结
2633人阅读
高一数学必修一函数知识点总结归纳
1000人阅读
高一数学必修一知识点总结
1000人阅读
(知识点)高一数学必修1函数知识点总结
1434人阅读
APP内一键查看
立即开通VIP
APP精选
最新高一数学必修一函数知识点总结
超3.3万次浏览 81%用户满意
(完整版)高一数学必修一函数知识点总结 3003阅读 4.1分 7页
高一数学必修一 基本初等函数知识点总结 3501阅读 5分 6页
剩余10篇精选文档
前往APP一键获取
(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .
(2) 画法
A、描点法:
B、图象变换法
常用变换方法有三种
1)平移变换
2)伸缩变换
3)对称变换
4.区间的概念
第 3 页
(1)区间的分类:开区间、闭区间、半开半闭区间
(2)无穷区间
(3)区间的数轴表示.
5.映射
一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”
第 4 页
对于映射f:A→B来说,则应满足:
(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;
(2)集合A中不同的元素,在集合B中对应的象可以是同一个;
(3)不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数
(1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.
(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.
补充:复合函数
如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
第 5 页
二.函数的性质
1.函数的单调性(局部性质)
(1)增函数
设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1
如果对于区间D上的任意两个自变量的值x1,x2,当x1
注意:函数的单调性是函数的局部性质;
(2) 图象的特点
如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.
第 6 页
(3).函数单调区间与单调性的判定方法
(A) 定义法:
任取x1,x2∈D,且x1
作差f(x1)-f(x2);
变形(通常是因式分解和配方);
定号(即判断差f(x1)-f(x2)的正负);
下结论(指出函数f(x)在给定的区间D上的单调性).
(B)图象法(从图象上看升降)
(C)复合函数的单调性
第 7 页
复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.
8.函数的奇偶性(整体性质)
(1)偶函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.
(2).奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.
(3)具有奇偶性的函数的图象的特征
偶函数的图象关于y轴对称;奇函数的图象关于原点对称.
利用定义判断函不偶偶性的步骤:
第 8 页
首先确定函数的定义域,并判断其是否关于原点对称;
确定f(-x)与f(x)的关系;
作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.
注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不合错误称则函数是非奇非偶函数.若对称,(1)再按照定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .
9、函数的解析表达式
(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.
(2)求函数的解析式的主要方法有:
1)凑配法
2)待定系数法
第 9 页
3)换元法
4)消参法
10.函数最大(小)值(定义见课本p36页)
利用二次函数的性质(配方法)求函数的最大(小)值
利用图象求函数的最大(小)值
利用函数单调性的判断函数的最大(小)值:
第 10 页
如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);
如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);
例题:
1.求下列函数的定义域:
⑴ ⑵
2.设函数的定义域为,则函数的定义域为_ _
3.若函数的定义域为,则函数的定义域是
4.函数 ,若,则=
第 11 页
5.求下列函数的值域:
⑴ ⑵
(3) (4)
6.已知函数,求函数,的解析式
7.已知函数满足,则= 。
8.设是R上的奇函数,且当时,,则当时=
在R上的解析式为
9.求下列函数的单调区间:
⑴ ⑵ ⑶
10.判断函数的单调性并证明你的结论.
第 12 页
11.设函数判断它的奇偶性并且求证:.
第三章 基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.
◆负数没有偶次方根;0的任何次方根都是0,记作。
当是奇数时,,当是偶数时,
2.分数指数幂
正数的分数指数幂的意义,规定:
第 13 页
,
◆0的正分数指数幂等于0,0的负分数指数幂没有意义
3.实数指数幂的运算性质
(1)· ;
(2) ;
(3) .
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数,其中x是自变量,函数的定义域为R.
注意:指数函数的底数的取值范围,底数不能是负数、零和1.
2、指数函数的图象和性质
第 14 页
a>1
定义域 R
定义域 R
值域y>0
值域y>0
在R上单调递增
在R上单调递减
非奇非偶函数
非奇非偶函数
函数图象都过定点(0,1)
函数图象都过定点(0,1)
注意:利用函数的单调性,结合图象还可以看出:
(1)在[a,b]上,值域是或;
第 15 页
(2)若,则;取遍所有正数当且仅当;
(3)对于指数函数,总有;
二、对数函数
(一)对数
1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(— 底数,— 真数,— 对数式)
说明: 注意底数的限制,且;
;
注意对数的书写格式.
两个重要对数:
常用对数:以10为底的对数;
第 16 页
自然对数:以无理数为底的对数的对数.
◆指数式与对数式的互化
幂值 真数
= N= b
底数
指数 对数
(二)对数的运算性质
第 17 页
如果,且,,,那么:
·+;
-;
.
注意:换底公式
(,且;,且;).
利用换底公式推导下面的结论
(1);(2).
(二)对数函数
1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).
第 18 页
注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:, 都不是对数函数,而只能称其为对数型函数.
对数函数对底数的限制:,且.
2、对数函数的性质:
a>1
定义域x>0
定义域x>0
值域为R
值域为R
在R上递增
在R上递减
函数图象都过定点(1,0)
函数图象都过定点(1,0)
(三)幂函数
第 19 页
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.
2、幂函数性质归纳.
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
第 20 页
The most popular courses